Role of RpoS in the virulence of Citrobacter rodentium.
نویسندگان
چکیده
Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effective model for studying enteropathogenesis. In this study we investigated the role of RpoS, the stationary phase sigma factor, in virulence in C. rodentium. Sequence analysis showed that the rpoS gene is highly conserved in C. rodentium and E. coli, exhibiting 92% identity. RpoS was critical for survival under heat shock conditions and during exposure to H(2)O(2) and positively regulated the expression of catalase KatE (HPII). The development of the RDAR (red dry and rough) morphotype, an important virulence trait in E. coli, was also mediated by RpoS in C. rodentium. Unlike E. coli, C. rodentium grew well in the mouse colon, and the wild-type strain colonized significantly better than rpoS mutants. However, a mutation in rpoS conferred a competitive growth advantage over the wild type both in vitro in Luria-Bertani medium and in vivo in the mouse colon. Survival analysis showed that the virulence of an rpoS mutant was attenuated. The expression of genes on the LEE pathogenicity island, which are essential for colonization and virulence, was reduced in the rpoS mutant. In conclusion, RpoS is important for the stress response and is required for full virulence in C. rodentium.
منابع مشابه
Citrobacter rodentium Relies on Commensals for Colonization of the Colonic Mucosa
We investigated the role of commensals at the peak of infection with the colonic mouse pathogen Citrobacter rodentium. Bioluminescent and kanamycin (Kan)-resistant C. rodentium persisted avirulently in the cecal lumen of mice continuously treated with Kan. A single Kan treatment was sufficient to displace C. rodentium from the colonic mucosa, a phenomenon not observed following treatment with v...
متن کاملDraft Genome Sequence of Citrobacter rodentium DBS100 (ATCC 51459), a Primary Model of Enterohemorrhagic Escherichia coli Virulence
Citrobacter rodentium is a Gram-negative bacterium which causes transmissible murine colonic hyperplasia and models the virulence of enterohemorrhagic Escherichia coli in vivo. Thus, C. rodentium is used to study human gastrointestinal disease. We present the draft genome sequence of C. rodentium strain ATCC 51459, also known as DBS100.
متن کاملVirulence regulation in Citrobacter rodentium: the art of timing
The mouse enteric pathogen Citrobacter rodentium, like its human counterpart, enteropathogenic Escherichia coli, causes attaching and effacing lesions in the intestinal epithelium of its host. This phenotype requires virulence factors encoded by the locus for enterocyte effacement (LEE) pathogenicity island. For timely expression of these virulence determinants at the site of infection and for ...
متن کاملQuorum sensing has an unexpected role in virulence in the model pathogen Citrobacter rodentium.
The bacterial mouse pathogen Citrobacter rodentium causes attaching and effacing (AE) lesions in the same manner as pathogenic Escherichia coli, and is an important model for this mode of pathogenesis. Quorum sensing (QS) involves chemical signalling by bacteria to regulate gene expression in response to cell density. E. coli has never been reported to have N-acylhomoserine lactone (AHL) QS, bu...
متن کاملThe lrp gene and its role in type I fimbriation in Citrobacter rodentium.
Citrobacter rodentium is a murine pathogen that is now widely used as an in vivo model for gastrointestinal infections due to its similarities with human enteropathogens, such as the possession of a locus for enterocyte effacement (the LEE island). We studied the lrp gene of C. rodentium and found that it encodes a product highly similar to members of the Lrp (leucine-responsive regulatory prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2009